Social Links Search
Tools
Close

  

Close

PENNSYLVANIA WEATHER

Biofortification of Microgreens With Zinc Could Mitigate Global ‘Hidden Hunger’

Biofortification of Microgreens With Zinc Could Mitigate Global ‘Hidden Hunger’


When the seeds of plants such as pea and sunflower are biofortified with zinc, the seedlings they quickly produce — harvested as microgreens — could both help to mitigate global malnutrition and boost the odds of people surviving a catastrophe.

That’s the conclusion of a Penn State research team that experimented with several biofortification methods to determine the most effective way to incorporate a mineral essential to human health into the young plants while not diminishing the amounts of other essential nutrients they produce. Microgreens biofortified with zinc offer people a lifeline in the face of starvation risk, according to team leader Francesco Di Gioia, assistant professor of vegetable crop science.

“This study has demonstrated that zinc biofortification through seed nutri-priming achieves needed levels of zinc in the young pea and sunflower plants we focused our experiments on,” he said. “These results have implications for both global ‘hidden hunger’ and emergency or catastrophe preparedness.”

The work is another development in the ongoing project "Food Resilience in the Face of Catastrophic Global Events," funded by the nonprofit foundation Open Philanthropy. In Di Gioia’s work, an international team of researchers found that microgreens can be grown in a variety of soilless production systems in small spaces indoors, with or without artificial lighting. The zinc biofortification component is an important new innovation.

Biofortification is the process of growing crops to increase nutritional value from the seed on, Di Gioia explained. It is different from food fortification, which involves adding nutrients to foods during post-harvest processing. In poor regions of the world, or under post-catastrophic conditions, simply soaking seeds in a zinc solution is a practical and effective strategy for producing nutrient-dense microgreens, he pointed out.

“Starting decades ago as fashionable, high-value gourmet greens, microgreens today have gained popularity among consumers for their nutritional profile and high content of antioxidant compounds,” he said. “Our work shows microgreens can help people to survive a global catastrophe such as all-out nuclear war, a large asteroid strike or supervolcano eruption in the short term, but additional nutritional resources may be needed in the longer term.”

Such a cataclysmic event would endanger agricultural productivity by reducing sunlight and temperature, disrupting rainfall patterns, and contaminating water supplies, thus threatening starvation for survivors of the initial event. Early on, biofortified microgreen production could improve the probability of human survival under these conditions.

The prospect of also being able to expeditiously mitigate hidden hunger excites Pradip Poudel, the second-year doctoral degree student in the College of Agricultural Sciences who spearheaded the research. He suggested that production of nutrient-dense crops using agronomic biofortification techniques is a sustainable strategy that is badly needed to address malnutrition.

The World Health Organization defines "hidden hunger" as a lack of vitamins and minerals that occurs when the quality of food people eat does not meet the nutrient requirements they need for their growth and development, Poudel noted. Two billion people suffer from vitamin and mineral deficiencies, according to the WHO.

Source: psu.edu

Photo Credit: pexels-dmitriy-zub

‘Blessing of the Balers’ Held at Pennsylvania Capitol ‘Blessing of the Balers’ Held at Pennsylvania Capitol
Redding Unveils Plan to Reform Pa.’s Over-order Premium Redding Unveils Plan to Reform Pa.’s Over-order Premium

Categories: Pennsylvania, Crops, Fruits and Vegetables, Harvesting, Weather

Subscribe to Farms.com newsletters

Crop News

Rural Lifestyle News

Livestock News

General News

Back To Top